Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 11.925
1.
Sci Rep ; 14(1): 10721, 2024 05 10.
Article En | MEDLINE | ID: mdl-38729962

Drainage and deforestation of tropical peat swamp forests (PSF) in Southeast Asia cause carbon emissions and biodiversity loss of global concern. Restoration efforts to mitigate these impacts usually involve peatland rewetting by blocking canals. However, there have been no studies to date of the optimal rewetting approach that will reduce carbon emission whilst also promoting PSF regeneration. Here we present results of a large-scale restoration trial in Sumatra (Indonesia), monitored for 7.5 years. Water levels in a former plantation were raised over an area of 4800 ha by constructing 257 compacted peat dams in canals. We find peat surface subsidence rates in the rewetted restoration area and adjoining PSF to be halved where water tables were raised from ~ - 0.6 m to ~ - 0.3 m, demonstrating the success of rewetting in reducing carbon emission. A total of 57 native PSF tree species were found to spontaneously grow in the most rewetted conditions and in high densities, indicating that forest regrowth is underway. Based on our findings we propose that an effective PSF restoration strategy should follow stepwise rewetting to achieve substantial carbon emission reduction alongside unassisted regrowth of PSF, thereby enabling the peat, forest and canal vegetation to establish a new nature-based ecosystem balance.


Conservation of Natural Resources , Forests , Soil , Wetlands , Conservation of Natural Resources/methods , Tropical Climate , Indonesia , Trees/growth & development , Biodiversity
2.
Parasit Vectors ; 17(1): 201, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711091

PURPOSE: The rising burden of mosquito-borne diseases in Europe extends beyond urban areas, encompassing rural and semi-urban regions near managed and natural wetlands evidenced by recent outbreaks of Usutu and West Nile viruses. While wetland management policies focus on biodiversity and ecosystem services, few studies explore the impact on mosquito vectors. METHODS: Our research addresses this gap, examining juvenile mosquito and aquatic predator communities in 67 ditch sites within a South England coastal marsh subjected to different wetland management tiers. Using joint distribution models, we analyse how mosquito communities respond to abiotic and biotic factors influenced by wetland management. RESULTS: Of the 12 mosquito species identified, Culiseta annulata (Usutu virus vector) and Culex pipiens (Usutu and West Nile virus vector) constitute 47% of 6825 larval mosquitoes. Abundant predators include Coleoptera (water beetles) adults, Corixidae (water boatmen) and Zygoptera (Damselfy) larvae. Models reveal that tier 3 management sites (higher winter water levels, lower agricultural intensity) associated with shade and less floating vegetation are preferred by specific mosquito species. All mosquito species except Anopheles maculipennis s.l., are negatively impacted by potential predators. Culiseta annulata shows positive associations with shaded and turbid water, contrary to preferences of Corixidae predators. CONCLUSIONS: Tier 3 areas managed for biodiversity, characterised by higher seasonal water levels and reduced livestock grazing intensity, provide favourable habitats for key mosquito species that are known vectors of arboviruses, such as Usutu and West Nile. Our findings emphasise the impact of biodiversity-focused wetland management, altering mosquito breeding site vegetation to enhance vector suitability. Further exploration of these trade-offs is crucial for comprehending the broader implications of wetland management.


Biodiversity , Culicidae , Mosquito Vectors , Wetlands , Animals , Mosquito Vectors/physiology , Mosquito Vectors/virology , Culicidae/classification , Culicidae/physiology , Culicidae/virology , Ecosystem , Larva/physiology , Seasons , United Kingdom , Culex/physiology , Culex/virology , Culex/classification , England
3.
Glob Chang Biol ; 30(5): e17314, 2024 May.
Article En | MEDLINE | ID: mdl-38747309

Unveiling spatial variation in vegetation resilience to climate extremes can inform effective conservation planning under climate change. Although many conservation efforts are implemented on landscape scales, they often remain blind to landscape variation in vegetation resilience. We explored the distribution of drought-resilient vegetation (i.e., vegetation that could withstand and quickly recover from drought) and its predictors across a heterogeneous coastal landscape under long-term wetland conversion, through a series of high-resolution satellite image interpretations, spatial analyses, and nonlinear modelling. We found that vegetation varied greatly in drought resilience across the coastal wetland landscape and that drought-resilient vegetation could be predicted with distances to coastline and tidal channel. Specifically, drought-resilient vegetation exhibited a nearly bimodal distribution and had a seaward optimum at ~2 km from coastline (corresponding to an inundation frequency of ~30%), a pattern particularly pronounced in areas further away from tidal channels. Furthermore, we found that areas with drought-resilient vegetation were more likely to be eliminated by wetland conversion. Even in protected areas where wetland conversion was slowed, drought-resilient vegetation was increasingly lost to wetland conversion at its landward optimum in combination with rapid plant invasions at its seaward optimum. Our study highlights that the distribution of drought-resilient vegetation can be predicted using landscape features but without incorporating this predictive understanding, conservation efforts may risk failing in the face of climate extremes.


Climate Change , Conservation of Natural Resources , Droughts , Wetlands , Plants , Models, Theoretical , Satellite Imagery
4.
Water Sci Technol ; 89(9): 2416-2428, 2024 May.
Article En | MEDLINE | ID: mdl-38747957

The connectivity of urban river networks plays an important role in cities in many aspects, such as urban water safety, water quality (WQ), and aquatic ecological balance. This study focuses on the river network and the Majiawan Wetland in the Chaoyang District of Beijing by establishing a two-dimensional hydrological WQ model employing various water allocation schemes between the river network and the wetland. Water circulation and WQ are the main indexes, and the effects of different scenarios on improving water circulation and WQ are simulated and compared. This study demonstrates that the addition of water replenishment at the intersection of river network and internal slow-water zones of the wetland (Scheme 2) has greater effectiveness in improving both hydrology and WQ compared to two other schemes. The water area of the Majiawan Wetland has expanded, and water velocity has increased. Using chemical oxygen demand, total nitrogen, and total phosphorus as the index values for determining the water class, the WQ of about 20% of the wetland area was reached Water Class II (domestic drinking water), with Water Class III (general industrial water) accounting for the other 80%. This study provides valuable evaluation and reference for similar areas of urban river network connectivity.


Rivers , Water Quality , Wetlands , Rivers/chemistry , Cities , Models, Theoretical , China , Computer Simulation
5.
Sci Rep ; 14(1): 11023, 2024 05 14.
Article En | MEDLINE | ID: mdl-38744922

Encroachment of vascular plants (VP) in temperate raised bogs, as a consequence of altered hydrological conditions and nutrient input, is widely observed. Effects of such vegetation shift on water and carbon cycles are, however, largely unknown and identification of responsible plant physiological traits is challenging. Process-based modelling offers the opportunity of gaining insights into ecosystem functioning beyond observations, and to infer decisive trait shifts of plant functional groups. We adapted the Soil-Vegetation-Atmosphere Transfer model pyAPES to a temperate raised bog site by calibration against measured peat temperature, water table and surface CO2 fluxes. We identified the most important traits determining CO2 fluxes by conducting Morris sensitivity analysis (MSA) under changing conditions throughout the year and simulated VP encroachment. We further investigated transferability of results to other sites by extending MSA to parameter ranges derived from literature review. We found highly variable intra-annual plant traits importance determining ecosystem CO2 fluxes, but only a partial shift of importance of photosynthetic processes from moss to VP during encroachment. Ecosystem respiration was dominated by peat respiration. Overall, carboxylation rate, base respiration rate and temperature sensitivity (Q10) were most important for determining bog CO2 balance and parameter ranking was robust even under the extended MSA.


Carbon Dioxide , Ecosystem , Plants , Seasons , Wetlands , Carbon Dioxide/metabolism , Carbon Dioxide/analysis , Plants/metabolism , Soil/chemistry , Photosynthesis , Carbon Cycle , Temperature , Models, Theoretical , Atmosphere
6.
Environ Monit Assess ; 196(6): 517, 2024 May 07.
Article En | MEDLINE | ID: mdl-38710902

Nowadays, the introduction of nutrients caused by human activities is considered an environmental issue and a significant problem in river basins and coastal ecosystems. In this study, the concentration of nutrients ( NO 3 - and PO 4 3 - ) in the surface water sources of the Maroon-Jarahi watershed in the southwest of Iran was determined, and the pollution status and health risk assessment were done. The average concentration of nitrate and phosphate in Ludab, Maroon, Zard, Allah, Jarahi rivers, and Shadegan wetland were obtained at 2.25-0.59, 4.59-1.84, 4.07-2.02, 5.40-2.81, 11.51-4.67, 21.63 and 6.20 (mg/l), respectively. A comparison of the results with the World Health Organization (WHO) limit showed that nitrate was lower than in all stations, but phosphate was higher than the limit in some stations of the Maroon, Allah, Jarahi rivers, and Shadegan wetland. Calculation of linear regression analysis showed significant positive relationships between nitrate and phosphate in all surface water sources (except Ludab) and based on the N/P ratio, nitrogen was estimated as the limiting factor in phytoplankton growth (N/P < 16). The evaluation of the status of the Nutrient pollution index (NPI) was observed as: Shadegan > Jarahi > Allah > Maroon > Zard > Ludab that the Jarahi River and Shadegan wetland were in the medium pollution class (1 < NPI ≤ 3) and other waterbodies were in the non-polluted to low pollution state (NPI < 1). Calculation of the chronic daily intake (CDI) showed that water body nutrients cause more non-carcinogenic health risks through the oral route than dermal exposure, and according to HI, children's health is more at risk than adults. Findings showed that surface water resources especially downstream of the Maroon-Jarahi watershed are at eutrophication risk, and to control the nearby human activities and as a result increase the nutrients in these water resources, measures should be taken.


Environmental Monitoring , Nitrates , Rivers , Water Pollutants, Chemical , Iran , Water Pollutants, Chemical/analysis , Risk Assessment , Humans , Rivers/chemistry , Nitrates/analysis , Phosphates/analysis , Wetlands , Water Pollution, Chemical/statistics & numerical data , Nutrients/analysis , Water Resources
7.
Environ Monit Assess ; 196(6): 520, 2024 May 07.
Article En | MEDLINE | ID: mdl-38713379

Salt marshes pose challenges for the birds that inhabit them, including high rates of nest flooding, tipping, and predation. The impacts of rising sea levels and invasive species further exacerbate these challenges. To assess the urgency of conservation and adequacy of new actions, researchers and wildlife managers may use population viability analyses (PVAs) to identify population trends and major threats. We conducted PVA for Formicivora acutirostris, which is a threatened neotropical bird species endemic to salt marshes. We studied the species' demography in different sectors of an estuary in southern Brazil from 2006 to 2023 and estimated the sex ratio, longevity, productivity, first-year survival, and mortality rates. For a 133-year period, starting in 1990, we modeled four scenarios: (1) pessimistic and (2) optimistic scenarios, including the worst and best values for the parameters; (3) a baseline scenario, with intermediate values; and (4) scenarios under conservation management, with increased recruitment and/or habitat preservation. Projections indicated population decline for all assessment scenarios, with a 100% probability of extinction by 2054 in the pessimistic scenario and no extinction in the optimistic scenario. The conservation scenarios indicated population stability with 16% improvement in productivity, 10% improvement in first-year survival, and stable carrying capacity. The disjunct distribution of the species, with remnants concentrated in a broad interface with arboreal habitats, may seal the population decline by increasing nest predation. The species should be considered conservation dependent, and we recommend assisted colonization, predator control, habitat recovery, and ex situ conservation.


Conservation of Natural Resources , Population Dynamics , Wetlands , Animals , Brazil , Extinction, Biological , Environmental Monitoring/methods , Endangered Species , Birds , Ecosystem
8.
Sci Rep ; 14(1): 10305, 2024 05 05.
Article En | MEDLINE | ID: mdl-38705916

This study investigates the intricate and enduring interplay of historical events, human activities, and natural processes shaping the landscape of North European Plain in western Poland over 230 years. Topographic maps serve as reliable historical data sources to quantify changes in forest, grassland, and wetland areas, scrutinizing their fragmentation and persistence. The primary objectives are to identify the permanent areas of the landscape and propose a universal cartographic visualization method for effectively mapping these changes. Using topographic maps and historical data, this research quantifies land cover changes, especially in forest, grassland, and wetland areas. With the help of retrogressive method we process raster historical data into vector-based information. Over time, wetlands experienced a substantial reduction, particularly in 1960-1982, attributed to both land reclamation and environmental factors. Grassland areas fluctuated, influenced by wetland and drier habitat dynamics. Fragmentation in grassland areas poses biodiversity and ecosystem health concerns, whereas forested areas showed limited fluctuations, with wetland forests nearly disappearing. These findings highlight wetland ecosystems' sensitivity to human impacts and emphasize the need to balance conservation and sustainable development to preserve ecological integrity. This study advances landscape dynamics understanding, providing insights into historical, demographic, economic, and environmental transformations. It underscores the imperative for sustainable land management and conservation efforts to mitigate human impacts on ecosystems and biodiversity in the North European Plain.


Conservation of Natural Resources , Forests , Grassland , Wetlands , Poland , Conservation of Natural Resources/methods , Humans , Biodiversity , Ecosystem , History, 18th Century
9.
Antonie Van Leeuwenhoek ; 117(1): 77, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717550

The "Shadegan International Wetland" (SIW) is one of the wetlands internationally recognized in the Ramsar convention. The vegetation of this wetland ecosystem consists of mostly grasses and shrubs that host a large number of fungi including endophytes. In this study, Nigrospora isolates were obtained from healthy plants of this wetland and its surrounding salt marshes and identified based on morphological features and multilocus phylogenetic analyses based on three DNA loci, namely the internal transcribed spacer regions 1 and 2 including the intervening 5.8S nuclear ribosomal DNA (ITS), ß-tubulin (tub2), and elongation factor 1-α (tef1-α). Accordingly, the following Nigrospora species were identified: N. lacticolonia, N. oryzae, N. osmanthi, N. pernambucoensis and a novel taxon N. shadeganensis sp. nov., which is described and illustrated. To the best of our knowledge, 10 new hosts for Nigrospora species are here reported, namely Aeluropus lagopoides, Allenrolfea occidentalis, Anthoxanthum monticola, Arthrocnemum macrostachyum, Cressa cretica, Halocnemum strobilaceum, Seidlitzia rosmarinus, Suaeda vermiculata, Tamarix passerinoides, and Typha latifolia. Moreover, the species N. lacticolonia and N. pernambucoensis are new records for the mycobiota of Iran.


Ascomycota , Endophytes , Phylogeny , Poaceae , Wetlands , Iran , Endophytes/classification , Endophytes/genetics , Endophytes/isolation & purification , Poaceae/microbiology , Ascomycota/genetics , Ascomycota/classification , Ascomycota/isolation & purification , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Tubulin/genetics
10.
Environ Monit Assess ; 196(6): 507, 2024 May 04.
Article En | MEDLINE | ID: mdl-38703253

The mangrove forest in Macajalar Bay is regarded as an important coastal ecosystem since it provides numerous ecosystem services. Despite their importance, the clearing of mangroves has been rampant and has reached critical rates. Addressing this problem and further advancing its conservation require accurate mangrove mapping. However, current spatial information related to mangroves is sparse and insufficient to understand the historical change dynamics. In this study, the synergy of 1950 vegetation maps and Landsat images was explored to provide multidecadal monitoring of mangrove forest change dynamics in Macajalar Bay, Philippines. Vegetation maps containing the 1950 mangrove extent and Landsat images were used as input data to monitor the rates of loss over 70 years. In 2020, the mangrove forest cover was estimated to be 201.73 ha, equivalent to only 61.99% of the 325.43 ha that was estimated in 1950. Between 1950 and 2020, net mangrove loss in Macajalar Bay totaled 324.29 ha. The highest clearing rates occurred between 1950 and 1990 when it recorded a total of 258.51 ha, averaging 6.46 ha/year. The original mangrove forest that existed in 1950 only represents 8.56% of the 2020 extent, suggesting that much of the old-growth mangrove had been cleared before 2000 and the existing mangrove forest is mainly composed of secondary mangrove forest stands. Across Macajalar Bay, intensified clearing that happened between 1950 and 1990 has been driven by large-scale aquaculture developments. Mangrove gains on the other hand were evident and have increased the total extent by 79.84 ha since 2000 as a result of several afforestation programs. However, approximately half of these gains that were observed since 2010 exhibited low canopy cover. As of writing, approximately 85% of the 2020 mangrove forest stands fall outside the 1950 original mangrove extent. Examining the viability of the original mangrove forest for mangrove reforestation together with promoting site-species matching, and biophysical assessment are necessary undertakings to advance current mangrove conservation initiatives in Macajalar Bay.


Conservation of Natural Resources , Environmental Monitoring , Geographic Information Systems , Remote Sensing Technology , Wetlands , Philippines , Bays , Ecosystem
11.
J Hazard Mater ; 471: 134343, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38640671

Microplastics are a growing concern in mangrove ecosystems; however, their effects on archaeal communities and related ecological processes remain unclear. We conducted in situ biofilm-enrichment experiments to investigate the ecological influence of polyethylene (PE) and polypropylene microplastics on archaeal communities in the sediments of mangrove ecosystems. The archaeal community present on microplastics was distinct from that of the surrounding sediments at an early stage but became increasingly similar over time. Bathyarchaeota, Thaumarchaeota, Euryarchaeota, and Asgardaeota were the most abundant phyla. Methanolobus, an archaeal biomarker, was enriched in PE biofilms, and significantly controlled by homogeneous selection in the plastisphere, indicating an increased potential risk of methane emission. The dominant archaeal assembly process in the sediments was deterministic (58.85%-70.47%), while that of the PE biofilm changed from stochastic to deterministic during the experiment. The network of PE plastispheres showed less complexity and competitive links, and higher modularity and stability than that of sediments. Functional prediction showed an increase in aerobic ammonia oxidation during the experiment, whereas methanogenesis and chemoheterotrophy were significantly higher in the plastisphere. This study provides novel insights into the impact of microplastic pollution on archaeal communities and their mediating ecological functions in mangrove ecosystems.


Archaea , Biofilms , Geologic Sediments , Microplastics , Polyethylene , Polypropylenes , Wetlands , Archaea/drug effects , Archaea/metabolism , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Microplastics/toxicity , Biofilms/drug effects , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Ecosystem
12.
J Hazard Mater ; 471: 134330, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38678704

Water scarcity, affecting one-fifth of the global population, is exacerbated by industrial, agricultural, and population growth pressures on water resources. Wastewater, containing Contaminants of Emerging Concern (CECs) such as antibiotics, presents environmental and health hazards. This study explores a Nature-Based Solution (NBS) using Constructed Wetlands (CWs) for wastewater reclamation and CECs removal. Two CW configurations (Vertical-VCW and Hybrid-HCW) were tested for their efficacy. Results show significant reduction in for all the chemico-physical and biological parameters meeting Italian water reuse standards. Furthermore, Antibiotic Resistant Bacteria (ARB) and Antibiotic Resistant Genes (ARGs) were effectively reduced, emphasizing the potential of the CWs in mitigating Antimicrobial Resistance (AMR). Lettuce seedlings irrigated with the treated wastewater exhibited no ARB/ARGs transfer, indicating the safety of the reclaimed wastewater for agricultural use. Overall, CWs emerge as sustainable Nature Based Solutions (NBS) for wastewater treatment, contributing to global water conservation efforts amid escalating water scarcity challenges.


Wastewater , Wetlands , Waste Disposal, Fluid/methods , Anti-Bacterial Agents/pharmacology , Water Purification/methods , Lactuca/drug effects , Drug Resistance, Bacterial/genetics , Bacteria/drug effects , Bacteria/genetics , Drug Resistance, Microbial/genetics , Water Pollutants, Chemical/toxicity
13.
Mar Pollut Bull ; 202: 116349, 2024 May.
Article En | MEDLINE | ID: mdl-38604081

Coastal Mangroves are facing growing threats due to the harmful consequences of human activities. This first-ever detailed study of natural radioactivity in soil samples collected from seven tourist destinations within the Sundarbans, the world's largest mangrove forest, was conducted using HPGe gamma-ray spectrometry. Although the activity levels of 226Ra (11 ± 1-44 ± 4 Bq/kg) and 232Th (13 ± 1-68 ± 6 Bq/kg) generally align with global averages, the concentration of 40K (250 ± 20-630 ± 55 Bq/kg) was observed to surpass the worldwide average primarily due to factors like salinity intrusion, fertilizer application, agricultural runoff, which suggests the potential existence of potassium-rich mineral resources near the study sites. The assessment of the hazard parameters indicates that the majority of these parameters are within the recommended limits. The soil samples do not pose a significant radiological risk to the nearby population. The results of this study can establish important radiological baseline data before the Rooppur Nuclear Power Plant begins operating in Bangladesh.


Radiation Monitoring , Wetlands , Soil Pollutants, Radioactive/analysis , Radium/analysis , Thorium/analysis , Spectrometry, Gamma , Soil/chemistry , Bangladesh , Potassium Radioisotopes/analysis , Forests
14.
Mar Pollut Bull ; 202: 116359, 2024 May.
Article En | MEDLINE | ID: mdl-38640766

Coastal wetland ecosystems are of utmost importance in regulating the mobility and distribution of elements in water and sediments, being the flooding by tidal events a recurrent process that strongly controls the hydrodynamics of the system. The aim of this work is to assess the control of the tidal regime and anthropogenic influence on the dynamics of some trace metals in water and sediments in the Punta Lara Natural Reserve situated in the Río de la Plata littoral. For that purpose, relationship between tidal flows, surface water and groundwater was evaluated. Also, hydrochemistry was analyzed based on the study of major ions and trace metals, being the presence of high concentrations of elements in groundwater, such as Fe and Mn, probably favoured by redox processes associated with organic matter decomposition in the water - sediment interaction. Sediments in the wetland register deficient to minimal enrichment in most of the studied trace metals despite the numerous contributions that the Río de la Plata receives in relation to dissolved and particulate trace metals from diverse anthropogenic contributions. Despite that, there is a moderate enrichment in Pb and Cr in the surface sediments of the wetland. The data analyzed within the natural reserve in relation to the chemical composition of the water and sediments of the coastal wetland showed the strong influence of the tidal regime over the area.


Environmental Monitoring , Estuaries , Geologic Sediments , Metals , Water Pollutants, Chemical , Wetlands , Geologic Sediments/chemistry , Argentina , Water Pollutants, Chemical/analysis , Metals/analysis , Forests , Trace Elements/analysis
15.
Sci Total Environ ; 929: 172590, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38642746

Harmful cyanobacterial blooms have increased globally, releasing hazardous cyanotoxins that threaten the safety of water resources. Constructed wetlands (CWs) are a nature-based and low-cost solution to purify and remove cyanotoxins from water. However, bio-mechanistic understanding of the biotransformation processes expected to drive cyanotoxin removal in such systems is poor, and primarily focused on bacteria. Thus, the present study aimed at exploring the fungal contribution to microcystin-LR and cylindrospermopsin biodegradation in CWs. Based on CW mesocosms, two experimental approaches were taken: a) amplicon sequencing studies were conducted to investigate the involvement of the fungal community; and b) CW fungal isolates were tested for their microcystin-LR and cylindrospermopsin degradation capabilities. The data uncovered effects of seasonality (spring or summer), cyanotoxin exposure, vegetation (unplanted, Juncus effusus or Phragmites australis) and substratum (sand or gravel) on the fungal community structure. Additionally, the arbuscular mycorrhizal fungus Rhizophagus and the endophyte Myrmecridium showed positive correlations with cyanotoxin removal. Fungal isolates revealed microcystin-LR-removal potentials of approximately 25 % in in vitro biodegradation experiments, while the extracellular chemical fingerprint of the cultures suggested a potential intracellular metabolization. The results from this study may help us understand the fungal contribution to cyanotoxin removal, as well as their ecology in CWs.


Biodegradation, Environmental , Fungi , Microcystins , Wetlands , Microcystins/metabolism , Fungi/metabolism , Bacterial Toxins/metabolism , Alkaloids/metabolism , Cyanobacteria Toxins , Marine Toxins/metabolism , Water Pollutants, Chemical/metabolism , Waste Disposal, Fluid/methods , Uracil/analogs & derivatives , Uracil/metabolism
16.
Sci Total Environ ; 929: 172443, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38649051

The effect of coastal wetland loss on shorebird habitat in recent years has been widely reported in previous studies. Various coastal wetland conservation and restoration measures have been implemented or will soon be implemented in China. The extent to which these measures will affect the area and structure of coastal wetland habitat in the future remains unclear. Here, we predicted changes in habitat area and structure for 39 common shorebird species along the coasts of the Yellow and Bohai Seas using a cellular automata-Markov (CA-Markov) land use scenario model and a maximum entropy species distribution model, along with terrain factors (slope, aspect, and digital evaluation model) and climate factors (temperature and precipitation) from the Data Centre for Resources and Environmental Sciences at the Chinese Academy of Sciences, land cover maps interpreted using the human-computer interactive method, and citizen science data of shorebird occurrences derived from eBird, Global Biodiversity Information Facility, and Bird Report. We found that shorebird habitat was most abundant along the coasts of Bohai Bay, Laizhou Bay, and Yancheng. The area of habitat decreased and became increasingly fragmented between 2000 and 2020 for more than half of the 39 species. Under the future business-as-usual scenario, the area of shorebird habitat decreased from 2020 to 2050, and the remaining habitat became increasingly fragmented. Under the ecological protection (EP) scenario, habitat loss was mitigated, and habitat connectivity was improved. The area of habitat was lower in 2050 under the EP scenario than in 2000 for most species, especially threatened species, suggesting that the area of habitat will not return to year-2000 levels under the EP scenario. These results emphasize the need to protect remaining shorebird habitats and implement ecological conservation measures to ensure the long-term preservation of coastal wetlands.


Birds , Conservation of Natural Resources , Ecosystem , Wetlands , China , Animals , Conservation of Natural Resources/methods , Environmental Monitoring , Biodiversity
17.
J Hazard Mater ; 470: 134221, 2024 May 15.
Article En | MEDLINE | ID: mdl-38615651

Constructed wetlands (CWs) are a promising approach for treating acid mine drainage (AMD). However, the extreme acidity and high loads of heavy metals in AMD can easily lead to the collapse of CWs without proper pre-treatment. Therefore, it is considered essential to maintain efficient and stable performance for AMD treatment in CWs. In this study, pre-prepared attapulgite-soda residue (ASR) composites were used to improve the substrate of CWs. Compared with CWs filled with gravel (CWs-G), the removal efficiencies of sulfate and Fe, Mn, Cu, Zn Cd and Pb in CWs filled with ASR composites (CWs-ASR) were increased by 30% and 10-70%, respectively. These metals were mainly retained in the substrate in stable forms, such as carbonate-, Fe/Mn (oxide)hydroxide-, and sulfide-bound forms. Additionally, higher levels of photosynthetic pigments and antioxidant enzyme activities in plants, along with a richer microbial community, were observed in CWs-ASR than in CWs-G. The application of ASR composites alleviated the adverse effects of AMD stresses on wetland plants and microorganisms. In return, the increased bacteria abundance, particularly SRB genera (e.g., Thermodesulfovibrionia and Desulfobacca), promoted the formation of metal sulfides, enabling the saturated ASR adsorbed with metals to regenerate and continuously capture heavy metals. The synergistic adsorption of ASR composites and microbial sulfate reduction maintained the stable and efficient operation of CWs. This study contributes to the resource utilization of industrial alkaline by-products and promotes the breakthrough of new techniques for low-cost and passive treatment systems such as CWs.


Magnesium Compounds , Metals, Heavy , Mining , Silicon Compounds , Sulfates , Water Pollutants, Chemical , Wetlands , Sulfates/chemistry , Metals, Heavy/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism , Silicon Compounds/chemistry , Magnesium Compounds/chemistry , Acids/chemistry , Oxidation-Reduction , Biodegradation, Environmental , Hydrogen-Ion Concentration
19.
Water Sci Technol ; 89(8): 2090-2104, 2024 Apr.
Article En | MEDLINE | ID: mdl-38678411

Constructed wetland systems have been widely used in China due to their advantages of good treatment effect, low cost and environmental friendliness. However, traditional constructed wetlands have challenges in application such as deactivation due to filler clogging, difficulty in filler replacement and low adaptability. To address the above problems, this research proposes a modular filler design constructed wetland based on the concept of assembly construction, which can quickly replace the clogged filler without destroying the overall structure of the wetland. Four commonly used fillers were selected and applied to the pilot system of the assembled constructed wetland in this study, in order to investigate the purification effect of the constructed wetland system with different filler module combinations (CW1, CW2, CW3) on the simulated wastewater. The results showed that the filler combination CW1 was the best for the removal of NH4+-N, and for TP and COD, CW2 has the best removal effect. Therefore, the assembled constructed wetland is adjustable and substantially reduces the maintenance cost, which provides technical guidance for its application in engineering.


Water Pollutants, Chemical , Wetlands , Water Purification/methods , Waste Disposal, Fluid/methods , Biological Oxygen Demand Analysis , Nitrogen/chemistry , Phosphorus/chemistry
20.
Sci Total Environ ; 928: 172290, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38599391

The contamination of wetlands by heavy metals, exacerbated by agricultural activities, presents a threat to both organisms and humans. Heavy metals may undergo trophic transfer through the food web. However, the methods for quantifying the bioaccumulation and trophic transfer processes of heavy metals based on the food web remains unclear. In this study, we employed stable isotope technology to construct a quantitative oriental white stork's typical food web model under a more accurate scaled Δ15N framework. On this basis, the concentrations for heavy metal (Cu, Zn, Hg, Pb) were analyzed, we innovatively visualized the trophic transfer process of heavy metals across 13 nodes and 45 links and quantified the transfer flux based on the diet proportions and heavy metal concentrations of species, taking into account biomagnification effects and potential risks. Our findings revealed that as for Cu and Pb, the transfer flux level was consistent with diet proportion across most links. While Hg and Zn transfer flux level exceeded the corresponding diet proportion in the majority of links. In summary, Hg exhibited a significant biomagnification, whereas Cu, Zn, Pb experienced biodilution. The fish dietary health risk assessment for fish consumers showed that Hg, Pb posed certain risks. This research marks a significant step forward in the quantitative assessment of multi-link networks involving heavy metals within the food web.


Bioaccumulation , Environmental Monitoring , Food Chain , Metals, Heavy , Water Pollutants, Chemical , Wetlands , Metals, Heavy/analysis , Metals, Heavy/metabolism , China , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Animals , Fresh Water , Fishes/metabolism
...